Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 36(7): e22355, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35639425

RESUMO

The Ups2-Mdm35 complex mediates intramitochondrial phosphatidylserine (PS) transport to facilitate mitochondrial phosphatidylethanolamine (PE) synthesis. In the present study, we found that ups2∆ yeast showed increased mitochondrial ATP production and enhanced quiescence (G0) entry in the post-diauxic shift phase. Transcriptomic and biochemical analyses revealed that the depletion of Ups2 leads to overactivation of the yeast AMPK homolog Snf1. Inactivation of Snf1 by depletion of an Snf1-activating kinase, Sak1 canceled the changes in mitochondrial ATP production and quiescence entry observed in ups2∆ cells. Furthermore, among the factors regulated by Snf1, upregulation of pyruvate carboxylase, Pyc1 and downregulation of acetyl-CoA carboxylase, Acc1, respectively, were sufficient to increase mitochondrial ATP production and quiescence entry. These results suggested that a normal PE synthesis mediated by Ups2-Mdm35 complex attenuates Snf1/AMPK activity, and that Snf1-mediated regulation of carbon metabolisms has great impacts on mitochondrial energy metabolism and quiescence entry. We also found that depletion of Ups2 together with the cell-cycle regulators Whi5 and Whi7, functional orthologs of the Rb1 tumor suppressor, caused a synthetic growth defect in yeast. Similarly, knockdown of PRELID3b, the human homolog of Ups2, decreased the viability of Rb1-deficient breast cancer cells, suggesting that PRELID3b is a potential target for cancer therapy.


Assuntos
Proteínas Quinases Ativadas por AMP , Metabolismo Energético , Mitocôndrias , Fosfatidiletanolaminas , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Humanos , Mitocôndrias/metabolismo , Fosfatidiletanolaminas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
Protein Sci ; 30(11): 2346-2353, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34516042

RESUMO

Phosphatidylserine (PS) synthase 1 (PSS1) of mammalian cells is a multiple membrane-spanning protein of the endoplasmic reticulum (ER) and regulated by inhibition with the product PS. Alanine-scanning mutagenesis of PSS1 has revealed eight amino acid residues as those crucial for its activity and six as those important for its regulation. Furthermore, three missense mutations in the human PSS1 gene, which lead to regulatory dysfunctions of PSS1 and are causative of Lenz-Majewski syndrome, have been identified. In this study, we investigated the membrane topology of PSS1 by means of epitope insertion and immunofluorescence. According to a 10-transmembrane segment model supported by topology analysis of PSS1, all the 8 amino acid residues crucial for the enzyme activity were localized to the luminal side of the lipid bilayer or the lumen of the ER, whereas all the 9 amino acid residues involved in the enzyme regulation were localized to the cytosol or the cytoplasmic side of the lipid bilayer of the ER. This localization of the functional amino acid residues suggests that PSS1 is regulated by inhibition with PS in the cytoplasmic leaflet of the ER membrane and synthesizes PS at the luminal leaflet.


Assuntos
Retículo Endoplasmático/enzimologia , Membranas Intracelulares/enzimologia , Bicamadas Lipídicas/metabolismo , Transferases de Grupos Nitrogenados/metabolismo , Retículo Endoplasmático/genética , Células HeLa , Humanos , Transferases de Grupos Nitrogenados/genética
3.
J Cell Sci ; 133(9)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393673

RESUMO

Peroxisomes are single-membrane organelles present in eukaryotes. The functional importance of peroxisomes in humans is represented by peroxisome-deficient peroxisome biogenesis disorders (PBDs), including Zellweger syndrome. Defects in the genes that encode the 14 peroxins that are required for peroxisomal membrane assembly, matrix protein import and division have been identified in PBDs. A number of recent findings have advanced our understanding of the biology, physiology and consequences of functional defects in peroxisomes. In this Review, we discuss a cooperative cell defense mechanisms against oxidative stress that involves the localization of BAK (also known as BAK1) to peroxisomes, which alters peroxisomal membrane permeability, resulting in the export of catalase, a peroxisomal enzyme. Another important recent finding is the discovery of a nucleoside diphosphate kinase-like protein that has been shown to be essential for how the energy GTP is generated and provided for the fission of peroxisomes. With regard to PBDs, we newly identified a mild mutation, Pex26-F51L that causes only hearing loss. We will also discuss findings from a new PBD model mouse defective in Pex14, which manifested dysregulation of the BDNF-TrkB pathway, an essential signaling pathway in cerebellar morphogenesis. Here, we thus aim to provide a current view of peroxisome biogenesis and the molecular pathogenesis of PBDs.


Assuntos
Transtornos Peroxissômicos , Peroxissomos , Animais , Membranas Intracelulares/metabolismo , Camundongos , Peroxinas , Transtornos Peroxissômicos/genética , Peroxissomos/metabolismo , Transporte Proteico
4.
Mol Cell ; 73(5): 1044-1055.e8, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30738703

RESUMO

Mitochondria import nearly all of their resident proteins from the cytosol, and the TOM complex functions as their entry gate. The TOM complex undergoes a dynamic conversion between the majority population of a three-channel gateway ("trimer") and the minor population that lacks Tom22 and has only two Tom40 channels ("dimer"). Here, we found that the porin Por1 acts as a sink to bind newly imported Tom22. This Por1 association thereby modulates Tom22 integration into the TOM complex, guaranteeing formation of the functional trimeric TOM complex. Por1 sequestration of Tom22 dissociated from the trimeric TOM complex also enhances the dimeric TOM complex, which is preferable for the import of TIM40/MIA-dependent proteins into mitochondria. Furthermore, Por1 appears to contribute to cell-cycle-dependent variation of the functional trimeric TOM complex by chaperoning monomeric Tom22, which arises from the cell-cycle-controlled variation of phosphorylated Tom6.


Assuntos
Proteínas de Transporte/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Porinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Proteínas de Transporte/genética , Ciclo Celular , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Fosforilação , Porinas/genética , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
5.
Subcell Biochem ; 89: 287-298, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30378028

RESUMO

Pex5 and Pex7 are cytosolic receptors for peroxisome targeting signal type-1 (PTS1) and type-2 (PTS2), respectively, and play a pivotal role in import of peroxisomal matrix proteins. Recent advance in mass spectrometry analysis has facilitated comprehensive analysis of protein-protein interaction network by a combination with immunoprecipitation or biochemical purification. In this chapter, we introduce several findings obtained by these methods applied to mammalian cells. Exploring Pex5-binding partners in mammalian cells revealed core components comprising the import machinery complex of matrix proteins and a number of PTS1-type cargo proteins. Biochemical purification of the Pex5-export stimulating factor from rat liver cytosol fraction identified Awp1, providing further insight into molecular mechanisms of the export step of mono-ubiquitinated Pex5. Identification of DDB1 (damage-specific DNA-binding protein 1), a component of CRL4 (Cullin4A-RING ubiquitin ligase) E3 complex, as a Pex7-interacting protein revealed that quality control of Pex7 by CRL4A is important for PTS2 protein import by preventing the accumulation of dysfunctional Pex7. Furthermore, analysis of binding partners of an intraperoxisomal processing enzyme, trypsin-domain containing 1 (Tysnd1), showed a protein network regulating peroxisomal fatty acid ß-oxidation.


Assuntos
Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Mapas de Interação de Proteínas , Animais , Linhagem Celular , Receptor 2 de Sinal de Orientação para Peroxissomos/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Transporte Proteico , Ratos
6.
Subcell Biochem ; 89: 463-471, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30378036

RESUMO

Peroxisomes contain anabolic and catabolic enzymes including oxidases that produce hydrogen peroxide as a by-product. Peroxisomes also contain catalase to metabolize hydrogen peroxide. It has been recognized that catalase is localized to cytosol in addition to peroxisomes. A recent study has revealed that loss of VDAC2 shifts localization of BAK, a pro-apoptotic member of Bcl-2 family, from mitochondria to peroxisomes and cytosol, thereby leading to release of peroxisomal matrix proteins including catalase to the cytosol. A subset of BAK is localized to peroxisomes even in wild-type cells, regulating peroxisomal membrane permeability and catalase localization. The cytosolic catalase potentially acts as an antioxidant to eliminate extra-peroxisomal hydrogen peroxide.


Assuntos
Estresse Oxidativo , Peroxissomos/metabolismo , Catalase/metabolismo , Morte Celular , Sobrevivência Celular , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/enzimologia
7.
J Biol Chem ; 293(45): 17593-17605, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30237174

RESUMO

Mitochondrial synthesis of cardiolipin (CL) and phosphatidylethanolamine requires the transport of their precursors, phosphatidic acid and phosphatidylserine, respectively, to the mitochondrial inner membrane. In yeast, the Ups1-Mdm35 and Ups2-Mdm35 complexes transfer phosphatidic acid and phosphatidylserine, respectively, between the mitochondrial outer and inner membranes. Moreover, a Ups1-independent CL accumulation pathway requires several mitochondrial proteins with unknown functions including Mdm31. Here, we identified a mitochondrial porin, Por1, as a protein that interacts with both Mdm31 and Mdm35 in budding yeast (Saccharomyces cerevisiae). Depletion of the porins Por1 and Por2 destabilized Ups1 and Ups2, decreased CL levels by ∼90%, and caused loss of Ups2-dependent phosphatidylethanolamine synthesis, but did not affect Ups2-independent phosphatidylethanolamine synthesis in mitochondria. Por1 mutations that affected its interactions with Mdm31 and Mdm35, but not respiratory growth, also decreased CL levels. Using HeLa cells, we show that mammalian porins also function in mitochondrial CL metabolism. We conclude that yeast porins have specific and critical functions in mitochondrial phospholipid metabolism and that porin-mediated regulation of CL metabolism appears to be evolutionarily conserved.


Assuntos
Cardiolipinas/biossíntese , Fosfatidiletanolaminas/biossíntese , Porinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cardiolipinas/genética , Células HeLa , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosfatidiletanolaminas/genética , Porinas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
Sci Rep ; 7(1): 16447, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29180659

RESUMO

Cardiolipin (CL) is synthesized from phosphatidic acid (PA) through a series of enzymatic reactions occurring at the mitochondrial inner membrane (MIM). Ups1-Mdm35 mediates PA transfer from the mitochondrial outer membrane (MOM) to the MIM in the yeast Saccharomyces cerevisiae. Deletion of UPS1 leads to a ~80% decrease in the cellular CL level. However, the CL accumulation in ups1∆ cells is enhanced by the depletion of Ups2, which forms a protein complex with Mdm35 and mediates phosphatidylserine (PS) transfer from the MOM to the MIM for phosphatidylethanolamine (PE) synthesis by a PS decarboxylase, Psd1. In this study, we found that the accumulation of CL in ups1∆ cells was enhanced by deletion of not only UPS2, but also PSD1 and CHO1 encoding a PS synthase, suggesting that low PE levels in mitochondria were relevant to the enhancement of CL accumulation in ups1∆ cells. Furthermore, the Ups1-independent and low-level PE-enhanced CL accumulation was shown to depend on the functions of FMP30, MDM31, and MDM32. In addition, the physical interactions of Fmp30 with Mdm31 and Mdm32 were revealed. Thus, when the mitochondrial PE level is reduced, Fmp30, Mdm31, and Mdm32 seem to function cooperatively for the accumulation of CL in a UPS1-independent manner.


Assuntos
Cardiolipinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Mitocôndrias/metabolismo , Mutação/genética , Fosfatidiletanolaminas/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/crescimento & desenvolvimento
9.
Mol Cell Oncol ; 4(3): e1306610, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28616584

RESUMO

Loss of voltage-dependent anion channel 2 (VDAC2) leads to impaired peroxisome biogenesis in mammalian cells. Knockdown of BAK restores peroxisomal biogenesis in VDAC2-deficient cells, where BAK localization shifts from mitochondria to peroxisomes. Moreover, overexpression of BAK activators in wild-type cells permeabilizes peroxisomes in a BAK-dependent manner. Together, BAK most likely regulates peroxisomal membrane permeability.

10.
J Biol Chem ; 292(13): 5429-5442, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28167535

RESUMO

Diverse protein import pathways into mitochondria use translocons on the outer membrane (TOM) and inner membrane (TIM). We adapted a genetic screen, based on Ura3 mistargeting from mitochondria to the cytosol, to identify small molecules that attenuated protein import. Small molecule mitochondrial import blockers of the Carla Koehler laboratory (MB)-10 inhibited import of substrates that require the TIM23 translocon. Mutational analysis coupled with molecular docking and molecular dynamics modeling revealed that MB-10 binds to a specific pocket in the C-terminal domain of Tim44 of the protein-associated motor (PAM) complex. This region was proposed to anchor Tim44 to the membrane, but biochemical studies with MB-10 show that this region is required for binding to the translocating precursor and binding to mtHsp70 in low ATP conditions. This study also supports a direct role for the PAM complex in the import of substrates that are laterally sorted to the inner membrane, as well as the mitochondrial matrix. Thus, MB-10 is the first small molecule modulator to attenuate PAM complex activity, likely through binding to the C-terminal region of Tim44.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Saccharomyces cerevisiae/efeitos dos fármacos , Animais , Sítios de Ligação , Testes Genéticos , Células HeLa , Humanos , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neurospora crassa , Transporte Proteico/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Peixe-Zebra
11.
J Cell Biol ; 216(3): 709-722, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28174205

RESUMO

Peroxisomal biogenesis disorders (PBDs) are fatal genetic diseases consisting of 14 complementation groups (CGs). We previously isolated a peroxisome-deficient Chinese hamster ovary cell mutant, ZP114, which belongs to none of these CGs. Using a functional screening strategy, VDAC2 was identified as rescuing the peroxisomal deficiency of ZP114 where VDAC2 expression was not detected. Interestingly, knockdown of BAK or overexpression of the BAK inhibitors BCL-XL and MCL-1 restored peroxisomal biogenesis in ZP114 cells. Although VDAC2 is not localized to the peroxisome, loss of VDAC2 shifts the localization of BAK from mitochondria to peroxisomes, resulting in peroxisomal deficiency. Introduction of peroxisome-targeted BAK harboring the Pex26p transmembrane region into wild-type cells resulted in the release of peroxisomal matrix proteins to cytosol. Moreover, overexpression of BAK activators PUMA and BIM permeabilized peroxisomes in a BAK-dependent manner. Collectively, these findings suggest that BAK plays a role in peroxisomal permeability, similar to mitochondrial outer membrane permeabilization.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Peroxissomos/metabolismo , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Citosol/metabolismo , Citosol/fisiologia , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Transtornos Peroxissômicos/metabolismo , Proteína X Associada a bcl-2/metabolismo
12.
J Cell Biol ; 214(1): 77-88, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27354379

RESUMO

Phosphatidylethanolamine (PE) is an essential phospholipid for mitochondrial functions and is synthesized mainly by phosphatidylserine (PS) decarboxylase at the mitochondrial inner membrane. In Saccharomyces cerevisiae, PS is synthesized in the endoplasmic reticulum (ER), such that mitochondrial PE synthesis requires PS transport from the ER to the mitochondrial inner membrane. Here, we provide evidence that Ups2-Mdm35, a protein complex localized at the mitochondrial intermembrane space, mediates PS transport for PE synthesis in respiration-active mitochondria. UPS2- and MDM35-null mutations greatly attenuated conversion of PS to PE in yeast cells growing logarithmically under nonfermentable conditions, but not fermentable conditions. A recombinant Ups2-Mdm35 fusion protein exhibited phospholipid-transfer activity between liposomes in vitro. Furthermore, UPS2 expression was elevated under nonfermentable conditions and at the diauxic shift, the metabolic transition from glycolysis to oxidative phosphorylation. These results demonstrate that Ups2-Mdm35 functions as a PS transfer protein and enhances mitochondrial PE synthesis in response to the cellular metabolic state.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Respiração Celular , Fermentação , Deleção de Genes , Mutação/genética , Fosfatidiletanolaminas/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo
13.
J Cell Biol ; 212(5): 531-44, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26903540

RESUMO

Mitochondrial fission facilitates cytochrome c release from the intracristae space into the cytoplasm during intrinsic apoptosis, although how the mitochondrial fission factor Drp1 and its mitochondrial receptors Mff, MiD49, and MiD51 are involved in this reaction remains elusive. Here, we analyzed the functional division of these receptors with their knockout (KO) cell lines. In marked contrast to Mff-KO cells, MiD49/MiD51-KO and Drp1-KO cells completely resisted cristae remodeling and cytochrome c release during apoptosis. This phenotype in MiD49/51-KO cells, but not Drp1-KO cells, was completely abolished by treatments disrupting cristae structure such as OPA1 depletion. Unexpectedly, OPA1 oligomers generally thought to resist cytochrome c release by stabilizing the cristae structure were similarly disassembled in Drp1-KO and MiD49/51-KO cells, indicating that disassembly of OPA1 oligomers is not directly linked to cristae remodeling for cytochrome c release. Together, these results indicate that Drp1-dependent mitochondrial fission through MiD49/MiD51 regulates cristae remodeling during intrinsic apoptosis.


Assuntos
Apoptose , GTP Fosfo-Hidrolases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Citocromos c/metabolismo , Citoplasma/metabolismo , Dinaminas , GTP Fosfo-Hidrolases/deficiência , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Mitocondriais/deficiência , Células Tumorais Cultivadas
14.
Biochem J ; 472(3): 319-28, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26443863

RESUMO

Phosphatidylethanolamine (PE) in the yeast Saccharomyces cerevisiae is synthesized through decarboxylation of phosphatidylserine (PS), catalysed by PS decarboxylase 1 (Psd1p) and 2 (Psd2p) and the cytidine 5'-diphosphate (CDP)-ethanolamine (CDP-Etn) pathway. PSD1 null (psd1Δ) and PSD2 null (psd2Δ) mutants are viable in a synthetic minimal medium, but a psd1Δ psd2Δ double mutant exhibits Etn auxotrophy, which is incorporated into PE through the CDP-Etn pathway. We have previously shown that psd1Δ is synthetic lethal with deletion of VID22 (vid22Δ) [Kuroda et al. (2011) Mol. Microbiol. 80: , 248-265]. In the present study, we found that vid22Δ mutant exhibits Etn auxotrophy under PSD1-depressed conditions. Deletion of VID22 in wild-type and PSD1-depressed cells caused partial defects in PE formation through decarboxylation of PS. The enzyme activity of PS decarboxylase in an extract of vid22Δ cells was ∼70% of that in wild-type cells and similar to that in psd2Δ cells and the PS decarboxylase activity remaining in the PSD1-depressed cells became almost negligible with deletion of VID22. Thus, the vid22Δ mutation was suggested to cause a defect in the Psd2p activity. Furthermore, vid22Δ cells were shown to be defective in expression of the PSD2 gene tagged with 6×HA, the defect being ameliorated by replacement of the native promoter of the PSD2 gene with a CYC1 promoter. In addition, an α-galactosidase reporter assay revealed that the activity of the promoter of the PSD2 gene in vid22Δ cells was ∼5% of that in wild-type cells. These results showed that VID22 is required for transcriptional activation of the PSD2 gene.


Assuntos
Carboxiliases/biossíntese , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ativação Transcricional/fisiologia , Carboxiliases/genética , Deleção de Genes , Proteínas de Membrana/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
Proc Natl Acad Sci U S A ; 111(40): 14406-11, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25237136

RESUMO

Primary hyperoxaluria 1 (PH1; Online Mendelian Inheritance in Man no. 259900), a typically lethal biochemical disorder, may be caused by the AGT(P11LG170R) allele in which the alanine:glyoxylate aminotransferase (AGT) enzyme is mistargeted from peroxisomes to mitochondria. AGT contains a C-terminal peroxisomal targeting sequence, but mutations generate an N-terminal mitochondrial targeting sequence that directs AGT from peroxisomes to mitochondria. Although AGT(P11LG170R) is functional, the enzyme must be in the peroxisome to detoxify glyoxylate by conversion to alanine; in disease, amassed glyoxylate in the peroxisome is transported to the cytosol and converted to oxalate by lactate dehydrogenase, leading to kidney failure. From a chemical genetic screen, we have identified small molecules that inhibit mitochondrial protein import. We tested whether one promising candidate, Food and Drug Administration (FDA)-approved dequalinium chloride (DECA), could restore proper peroxisomal trafficking of AGT(P11LG170R). Indeed, treatment with DECA inhibited AGT(P11LG170R) translocation into mitochondria and subsequently restored trafficking to peroxisomes. Previous studies have suggested that a mitochondrial uncoupler might work in a similar manner. Although the uncoupler carbonyl cyanide m-chlorophenyl hydrazone inhibited AGT(P11LG170R) import into mitochondria, AGT(P11LG170R) aggregated in the cytosol, and cells subsequently died. In a cellular model system that recapitulated oxalate accumulation, exposure to DECA reduced oxalate accumulation, similar to pyridoxine treatment that works in a small subset of PH1 patients. Moreover, treatment with both DECA and pyridoxine was additive in reducing oxalate levels. Thus, repurposing the FDA-approved DECA may be a pharmacologic strategy to treat PH1 patients with mutations in AGT because an additional 75 missense mutations in AGT may also result in mistrafficking.


Assuntos
Dequalínio/farmacologia , Hiperoxalúria Primária/metabolismo , Transaminases/metabolismo , Animais , Anti-Infecciosos Locais/farmacologia , Células CHO , Cricetinae , Cricetulus , Avaliação Pré-Clínica de Medicamentos/métodos , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/embriologia , Humanos , Hiperoxalúria Primária/genética , Hiperoxalúria Primária/prevenção & controle , Immunoblotting , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Mutação , Oxalatos/metabolismo , Peroxissomos/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Piridoxina/farmacologia , Transaminases/genética , Peixe-Zebra/embriologia
16.
J Clin Invest ; 124(10): 4294-304, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25157825

RESUMO

The transport and intracellular trafficking of heme biosynthesis intermediates are crucial for hemoglobin production, which is a critical process in developing red cells. Here, we profiled gene expression in terminally differentiating murine fetal liver-derived erythroid cells to identify regulators of heme metabolism. We determined that TMEM14C, an inner mitochondrial membrane protein that is enriched in vertebrate hematopoietic tissues, is essential for erythropoiesis and heme synthesis in vivo and in cultured erythroid cells. In mice, TMEM14C deficiency resulted in porphyrin accumulation in the fetal liver, erythroid maturation arrest, and embryonic lethality due to profound anemia. Protoporphyrin IX synthesis in TMEM14C-deficient erythroid cells was blocked, leading to an accumulation of porphyrin precursors. The heme synthesis defect in TMEM14C-deficient cells was ameliorated with a protoporphyrin IX analog, indicating that TMEM14C primarily functions in the terminal steps of the heme synthesis pathway. Together, our data demonstrate that TMEM14C facilitates the import of protoporphyrinogen IX into the mitochondrial matrix for heme synthesis and subsequent hemoglobin production. Furthermore, the identification of TMEM14C as a protoporphyrinogen IX importer provides a genetic tool for further exploring erythropoiesis and congenital anemias.


Assuntos
Eritropoese/genética , Heme/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Anemia/metabolismo , Animais , Linhagem Celular , Células Eritroides/metabolismo , Regulação da Expressão Gênica , Hemoglobinas/metabolismo , Fígado/embriologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/genética , Membranas Mitocondriais/metabolismo , Porfirinas/metabolismo , Protoporfirinas/metabolismo , RNA Interferente Pequeno/metabolismo
17.
Am J Hum Genet ; 93(5): 906-14, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24119684

RESUMO

We used exome sequencing to identify mutations in sideroflexin 4 (SFXN4) in two children with mitochondrial disease (the more severe case also presented with macrocytic anemia). SFXN4 is an uncharacterized mitochondrial protein that localizes to the mitochondrial inner membrane. sfxn4 knockdown in zebrafish recapitulated the mitochondrial respiratory defect observed in both individuals and the macrocytic anemia with megaloblastic features of the more severe case. In vitro and in vivo complementation studies with fibroblasts from the affected individuals and zebrafish demonstrated the requirement of SFXN4 for mitochondrial respiratory homeostasis and erythropoiesis. Our findings establish mutations in SFXN4 as a cause of mitochondriopathy and macrocytic anemia.


Assuntos
Anemia Macrocítica/genética , Proteínas de Membrana/genética , Doenças Mitocondriais/genética , Adolescente , Animais , Criança , Eritropoese/genética , Exoma , Feminino , Técnicas de Silenciamento de Genes , Humanos , Proteínas Mitocondriais/genética , Mutação , Peixe-Zebra/genética
18.
Biochim Biophys Acta ; 1823(1): 145-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22079764

RESUMO

Peroxisome is a single-membrane organelle in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient peroxisome biogenesis disorders such as Zellweger syndrome. Two AAA peroxins, Pex1p and Pex6p, are encoded by PEX1 and PEX6, the causal genes for PBDs of complementation groups 1 and 4, respectively. PEX26 responsible for peroxisome biogenesis disorders of complementation group 8 codes for C-tail-anchored type-II membrane peroxin Pex26p, the recruiter of Pex1p-Pex6p complexes to peroxisomes. Pex1p is targeted to peroxisomes in a manner dependent on ATP hydrolysis, while Pex6p targeting requires ATP but not its hydrolysis. Pex1p and Pex6p are most likely regulated in their peroxisomal localization onto Pex26p via conformational changes by ATPase cycle. Pex5p is the cytosolic receptor for peroxisome matrix proteins with peroxisome targeting signal type-1 and shuttles between the cytosol and peroxisomes. AAA peroxins are involved in the export from peroxisomes of Pex5p. Pex5p is ubiquitinated at the conserved cysteine11 in a form associated with peroxisomes. Pex5p with a mutation of the cysteine11 to alanine, termed Pex5p-C11A, abrogates peroxisomal import of proteins harboring peroxisome targeting signals 1 and 2 in wild-type cells. Pex5p-C11A is imported into peroxisomes but not exported, hence suggesting an essential role of the cysteine residue in the export of Pex5p.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Multimerização Proteica , Receptores Citoplasmáticos e Nucleares/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Animais , Sequência Conservada , Humanos , Proteínas de Membrana/química , Receptor 1 de Sinal de Orientação para Peroxissomos , Peroxissomos/enzimologia , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/química
19.
Traffic ; 13(1): 168-83, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21980954

RESUMO

During biogenesis of the peroxisome, a subcellular organelle, the peroxisomal-targeting signal 1 (PTS1) receptor Pex5 functions as a shuttling receptor for PTS1-containing peroxisomal matrix proteins. However, the precise mechanism of receptor shuttling between peroxisomes and cytosol remains elusive despite the identification of numerous peroxins involved in this process. Herein, a new factor was isolated by a combination of biochemical fractionation and an in vitro Pex5 export assay, and was identified as AWP1/ZFAND6, a ubiquitin-binding NF-κB modulator. In the in vitro Pex5 export assay, recombinant AWP1 stimulated Pex5 export and an anti-AWP1 antibody interfered with Pex5 export. AWP1 interacted with Pex6 AAA ATPase, but not with Pex1-Pex6 complexes. Preferential binding of AWP1 to the cysteine-ubiquitinated form of Pex5 rather than to unmodified Pex5 was mediated by the AWP1 A20 zinc-finger domain. Inhibition of AWP1 by RNA interference had a significant effect on PTS1-protein import into peroxisomes. Furthermore, in AWP1 knock-down cells, Pex5 stability was decreased, similar to fibroblasts from patients defective in Pex1, Pex6 and Pex26, all of which are required for Pex5 export. Taken together, these results identify AWP1 as a novel cofactor of Pex6 involved in the regulation of Pex5 export during peroxisome biogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/metabolismo , Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Proteínas Adaptadoras de Transdução de Sinal/genética , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Células CHO , Fracionamento Celular , Cricetinae , Cricetulus , Citosol/metabolismo , Eletroforese em Gel de Poliacrilamida , Células HeLa , Humanos , Imunoprecipitação , Fígado/citologia , Fígado/metabolismo , Camundongos , Microscopia de Fluorescência , Modelos Biológicos , Dados de Sequência Molecular , Receptor 1 de Sinal de Orientação para Peroxissomos , Estabilidade Proteica , Transporte Proteico , Ratos , Receptores Citoplasmáticos e Nucleares/genética , Transfecção , Ubiquitinação , Dedos de Zinco
20.
Traffic ; 12(8): 1067-83, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21554508

RESUMO

Pex5p is the cytosolic receptor for peroxisome matrix proteins with peroxisome-targeting signal (PTS) type 1 and shuttles between the cytosol and peroxisomes. Here, we show that Pex5p is ubiquitinated at the conserved cysteine(11) in a manner sensitive to dithiothreitol, in a form associated with peroxisomes. Pex5p with a mutation of the cysteine(11) to alanine, termed Pex5p-C11A, abrogates peroxisomal import of PTS1 and PTS2 proteins in wild-type cells. Pex5p-C11A is imported into peroxisomes but not exported, resulting in its accumulation in peroxisomes. These results suggest an essential role of the cysteine residue in the export of Pex5p. Furthermore, domain mapping indicates that N-terminal 158-amino-acid region of Pex5p-C11A, termed 158-CA, is sufficient for such dominant-negative activity by binding to membrane peroxin Pex14p via its two pentapeptide WXXXF/Y motifs. Stable expression of either Pex5p-C11A or 158-CA likewise inhibits the wild-type Pex5p import into peroxisomes, strongly suggesting that Pex5p-C11A exerts the dominant-negative effect at the translocation step via Pex14p. Taken together, these findings show that the cysteine(11) of Pex5p is indispensable for two distinct steps, its import and export. The Pex5p-C11A would be a useful tool for gaining a mechanistic insight into the matrix protein import into peroxisomes.


Assuntos
Cisteína/metabolismo , Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Ubiquitinação/fisiologia , Motivos de Aminoácidos , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Cisteína/genética , Citosol/metabolismo , Ditiotreitol/farmacologia , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Receptor 2 de Sinal de Orientação para Peroxissomos , Receptor 1 de Sinal de Orientação para Peroxissomos , Peroxissomos/genética , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Ratos , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Repressoras/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...